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Control of birhythmicity through conjugate self-feedback: Theory and experiment
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Birhythmicity arises in several physical, biological and chemical systems. Although, many control
schemes are proposed for various forms of multistability, only a few exist for controlling birhythmic-
ity. In this paper we investigate the control of birhythmic oscillation by introducing a self-feedback
mechanism that incorporates the variable to be controlled and its canonical conjugate. Using a de-
tailed analytical treatment, bifurcation analysis and experimental demonstrations we establish that
the proposed technique is capable of eliminating birhythmicity and generates monorhythmic oscil-
lation. Further, the detailed parameter space study reveals that, apart from monorhythmicity, the
system shows transition between birhythmicity and other dynamical forms of bistability. This study
may have practical applications in controlling birhythmic behavior of several systems, in particular
in biochemical and mechanical processes.

PACS numbers: 82.40.Bj, 05.45.-a

I. INTRODUCTION

Multistabity is a common dynamical feature of many
natural systems [1–3]. Although it appears in diverse
forms, a very frequently occurred variant is bistability.
There are three main manifestations of bistability: The
coexistence of (i) two stable steady states, (ii) one stable
limit cycle and one stable steady state, and (iii) two sta-
ble limit cycles. The third form of bistability, i.e., the co-
existence of two stable limit cycles of different amplitude
and frequency, generally separated by an unstable limit
cycle, is called birhythmicity and oscillators showing this
behavior are called birhythmic oscillators. Apart from
two coexisting periodic limit cycles, birhythmicity may
appear in a much more complex form, e.g., coexistence
of two chaotic attractors [4, 5]. Birhythmic oscillators
are very common, particularly, in physics (e.g., energy
harvesting system, see Ref. [6] and references therein) bi-
ology (e.g. glycolytic oscillator and enzymatic reactions
[1, 2, 7]) and chemistry [8]. Most of the biochemical os-
cillations that govern the organization of cell cycle, brain
dynamics or chemical oscillations are birhythmic; exam-
ples include, birhythmicity in the p53-Mdm2 network,
which is the key protein module that controls prolifer-
ation of abnormal cells in mammals [9, 10], intracellu-
lar Ca2+ oscillations [2], oscillatory generation of cyclic
AMP (cAMP) during the aggregation of the slime mold
Dictyostelium discoideum [11] and circadian oscillations
of the PER and TIM proteins in Drosophila [12].
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In physical and engineering systems birhythmicity
plays a negative role in limiting the efficiency of a cer-
tain application. Take the practical example of an en-
ergy harvesting system that converts wind-induced vibra-
tional energy into electrical energy. This type of energy
harvesting systems show birhythmicity [6], but for an ef-
ficient harvesting it is desirable that the system always
resides on the large amplitude limit cycle because that
produces a significant mechanical deformation, which, in
turn results in larger amount of harvested electric power.
Further, the presence of birhythmicity makes a system
vulnerable to noise: depending upon the noise inten-
sity the system may end up in any of the two limit cy-
cles, which results in an unpredictable system dynamics
[3, 13]. Therefore, monorhythmicity is of practical im-
portance in most of the physical systems. On the other
hand, in networks of neuronal oscillators the occurrence
of birhythmicity is often desirable to generate and main-
tain different modes of oscillations that organize various
biochemical processes in response to variations in their
environment [8]. Therefore, identifying an efficient con-
trol technique is of importance that can tame birhyth-
micity to yield monorhythmic oscillation or can retain
its character intact where ever needed.

Although several mechanisms are proposed for control-
ling bistability consisting of oscillation and steady state
[14] (for an elaborate recent review on the control of mul-
tistability see [3] and references therein), only a few ex-
ist to control birhythmicity. Ghosh et al. [15] reported
an effective control mechanism of birhythmic behavior
in a modified van der Pol system by using a variant of
Pyragas technique of time delay control [16] and they
showed that depending upon the time-delay one can in-
duce monorhythmic oscillation out of birhythmicity. But,
due to the presence of time delay the system becomes

http://arxiv.org/abs/1610.04722v1
mailto:debbisrs@gmail.com
mailto:tbanerjee@phys.buruniv.ac.in
mailto:juergen.kurths@pik-potsdam.de


2

infinite dimensional and thus a detailed bifurcation anal-
ysis for a wide parameter space is difficult and was not
reported there. Further, the authors of [15] established
that their technique can suppress the effective birhyth-
mic zone but can not eliminate it completely for all pos-
sible sets of nonlinear damping parameter values. In this
context, another interesting control technique has been
reported recently by Sevilla-Escoboza et al. [17], where
the authors demonstrated that multistable systems with
coexisting either periodic or chaotic attractors can be
converted into a monostable one by applying an external
harmonic modulation and a positive feedback to a proper
accessible system parameter.
In the present paper we propose an effective and much

more general control technique, that we call the con-
jugate self-feedback control, which is able to eliminate
birhythmicity and induce monorhythmic behavior. We
consider a modified van der Pol equation that has been
proposed to model enzyme reactions in some biosystems
[18, 19] and also has been studied earlier as a prototypi-
cal model that exhibits birhthmicity [15, 18, 19]. With a
detailed bifurcation study we establish the effectiveness
of the proposed control technique in taming birhthmic-
ity and inducing monorhythmicity. Depending upon the
value of the self-feedback strength it also offers freedom to
select one of the desired dynamics. We also demonstrate
our results experimentally with an electronic circuit and
verify that our results are robust enough in a real-world
setup where the presence of parameter fluctuation and
noise are inevitable.

II. THE VAN DER POL OSCILLATOR WITH

BIRHYTHIMICITY

First we describe the model used in the following. Con-
sider a birhythmic van der Pol oscillator given by [18, 19]

ẍ− µ(1− x2 + αx4 − βx6)ẋ+ x = 0. (1)

Here, µ > 0, α > 0 and β > 0 are parameters that
determine the nonlinear damping.
In Ref. [20], Kadji et al. considered, x(t) = A cosωt,

and by using the harmonic decomposition method they
arrived at the following amplitude equation:

5β

64
A6 −

α

8
A4 +

1

4
A2 − 1 = 0. (2)

Equation (2) is the generic form of the codimension-two
saddle-node (SN) bifurcation. Note that Eq. (2) is inde-
pendent of the parameter µ. The two parameter bifur-
cation diagram in the α− β parameter space is shown in
Fig. 1 (a) that exhibits a cusp type of codimension-two
bifurcation. The exchange of rhythmicity is through the
saddle-node bifurcation of the limit cycle (SNLC) (shown
by the solid black line in the figure). Fig. 1(b) shows the
controlled case with d = −0.1 (d is the control parameter
to be discussed later), where birhythmicity is completely
removed and only monorhythmicity exists.
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FIG. 1. The two parameter bifurcation diagram in the α −

β space with µ = 0.1. Bifurcation diagram for (a) Eq. (1)
(i.e., without control), SNLC: Saddle-node bifurcation of limit
cycle; (b) With control (for d = −0.1 of Eq.3): the control
eliminates birhthmicity and only one limit cycle (LC) exists.

III. CONTROL OF BIRHYTHMICITY

THROUGH CONJUGATE SELF-FEEDBACK:

THEORY

Next we introduce a conjugate self-feedback term d(ẋ−
x) in Eq. (1)

ẍ− µ(1− x2 + αx4 − βx6)ẋ+ x+ d(ẋ − x) = 0, (3)

which contains the variable of our interest, x, and its
canonical conjugate [21], ẋ; here d controls the strength
of the self-feedback. Further, a close inspection reveals
that the self-feedback mechanism effectively controls the
damping of the system through the ẋ variable and the
effective frequency through the x variable. However,
understanding of their collective effect on the dynamics
needs a detailed analysis that we will address next.

To unravel the underlying dynamics of the controlled
system we use the harmonic decomposition method. Let
us assume the approximate solution of (3) be given by

x(t) = A cosωt, (4)

with A being the amplitude and ω the frequency of the
oscillator with feedback. Substituting this in (3) yields
the following expression

(

−ω2 − d+ 1
)

A cosωt =

− µω

(

1−
1

4
A2 +

α

8
A4 −

5β

64
A6

)

A sinωt

+ dωA sinωt

+ µω

(

1

4
A2 −

3α

16
A4 +

9β

64
A6

)

A sin 3ωt

− µω

(

α

16
A4 −

5β

64
A6

)

A sin 5ωt

+A7βµω sin 7ωt.

(5)

But according to Ref. [22], we can ignore the higher har-
monics regarding them as forcing term, which diminish
with increasing harmonics. Thus, Eq. (5) can be reduced
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FIG. 2. Plot of f(A2)−A2 for the parameter set µ = 0.1, α =
0.114, β = 0.003 for different values of the coupling parameter
d. The solid dark (red) curve for d = −0.2 represents single
limit cycle with large amplitude and the solid gray (green)
curve for d = 0.05 represents that with small amplitude. In
between the curve for d = −0.02 is for birhythmic oscillation.
The lower curve for d = 0.2 represents stable steady state.

to

(

− ω2 − d+ 1
)

A cosωt =

− µω

(

1−
1

4
A2 +

α

8
A4 −

5β

64
A6

)

A sinωt

+ dωA sinωt+ higher harmonic terms.

(6)

The equation (6) suggests the following frequency and
amplitude equations, respectively,

ω2 + d− 1 = 0, (7)

and

µ

(

1−
1

4
A2 +

α

8
A4 −

5β

64
A6

)

− d = 0. (8)

It is interesting to note that, Eq. (8) is equivalent to
Eq. (2) when d = 0, i.e., in the absence of any feedback.
Also, it may be noted that the amplitude of the system
depends on µ when d 6= 0, contrary to Eq. (2). The fre-
quency in the harmonic limit corresponds to ω = 1. Fur-
ther, Eq. (7) imposes an upper limit on the strength of
the feedback, namely d ≤ 1 otherwise the frequency be-
comes imaginary, which is non-physical. The three roots
(actually six roots, with ±Ai, (i = 1, 2).) correspond
to the amplitudes of three limit cycles (two stable, one
unstable). We can get a hint of the amplitude of the
limit cycles and test the stability using the energy bal-
ance method as suggested in Ref. [15]. From Eq. (3) one
can infer that, for µ = 0 and d = 0, the harmonic solution
may be given by [23]

x(t) = A cos(t+ φ), (9)

where, φ is the initial phase, preferably φ = 0 for conve-
nience. The phase plane of this solution is a circle with

period T = 2π. In the presence of self-feedback we can
approximate

x(t) ⋍ A cos t. (10)

Now, the change in energy ∆E in one period 0 ≤ t ≤ T ,
where T = 2π, may be found out if one considers the
term µ(1 − x2 + αx4 − βx6) − d(ẋ − x) as the external
forcing term by the following way

∆E = E(T )− E(0),

=

∫ T

0

[

µ(1− x2 + αx4 − βx6)− d(ẋ− x)
]

ẋdt. (11)

For a periodic solution (limit cycle), the change in energy
must be zero, i.e., ∆E = 0. Hence the above integration
along with the condition of Eq. (10) yields

f(A2) = µ

(

1−
1

4
A2 +

α

8
A4 −

5β

64
A6

)

− d = 0. (12)

Again, we see that, Eq. (12) is identical to Eq. (8). In the
absence of the coupling Eq. (12) reduces to Eq. (2). The
saddle-node bifurcation may be controlled by changing
the value of d. Eq. (12) may be solved to have a number
of positive roots, which determines the number of limit
cycle (LC). One can determine the stability of the limit
cycle by the slope of the curve of Eq. (12) at the zero
crossing points. The negative slope determines the stable
limit cycle. Thus, we can write

d∆E(A)

dA

∣

∣

∣

∣

Limit cycle

< 0, (13)

as the condition for a stable limit cycle.
Now let us discuss how to determine the presence of

limit cycles and their stability out of the above analyt-
ical results. The amplitude equation Eq. (12) may be
solved by graphical method. The solutions are those
for which the function f(A2) crosses the horizontal zero
line. We consider the parameter set µ = 0.1, α = 0.114
and β = 0.003 for which (3) exhibits birhythmicity in
the absence of self-feedback; next, we vary the coupling
strength d to get different solutions. The number of limit
cycles is determined by the number of solutions of the am-
plitude equation. The number provides the information
of the steady state solution (i.e., no solution), existence
of a single limit cycle (monorhythmicity) or three limit
cycles (birhythmicity, one of the LCs is unstable). From
Fig. 2 we find that for d = 0.2 there is no zero crossing
of the curve, i.e., there is no LC and the system is in a
steady state. As we decrease d, the f(A2) curve crosses
the horizontal zero line from below and gives rise to a
stable LC. This is shown for d = 0.05 with solid gray
(green) line, here the system has only one stable LC of
small amplitude. Further decrease in d brings it to the
birhythmic regime where the f(A2) curve crosses the hor-
izontal zero line at three different values of A2 indicating
three LCs (shown for d = −0.02). The stability of three
LCs are determined by Eq. (13), which suggests that the
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FIG. 3. (a) Two parameter bifurcation diagram in the d− µ
space for α = 0.114, β = 0.003, (b) bifurcation diagram with
d for µ = 0.1 (the horizontal broken line in Fig. 3(a)). SSS:
Stable steady state. (dU − dL) is the width of birhythmic
zone.

middle zero point of the curve in Fig. 2 represents the
unstable LC. Further increase in d brings the system to
a monorhythmic region with the large LC. The case of
large single LC for d = −0.1 is shown in the upper solid
dark (red) line.
The original birhythmic van der Pol oscillator given

by (1) exhibits only global SNLC type of bifurcation.
However, due to the presence of the feedback term in the
controlled case (i.e., Eq.3), Eq. (2) is modified to Eq. (8),
and thus the system additionally exhibits local bifurca-
tion, namely Hopf bifurcation. We derive the value of
d for which Hopf bifurcation occurs from the eigenval-
ues of the jacobian of Eq. (3) around the steady state
(x, ẋ) = (0, 0). The eigenvalues are given by

λ1,2 =
1

2

(

(µ− d)±
√

(d− µ)2 − 4(1− d)

)

. (14)

Equation (14) gives the condition of Hopf bifurcation as

dHB = µ, (15)

where dHB is the value of d for which Hopf bifurcation
occurs.

IV. NUMERICAL BIFURCATION ANALYSIS

In this section we investigate the possible bifurcation
scenarios of the system using the continuation package
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FIG. 4. Time series and phase plane plots: (a,b) d = −0.2:
large amplitude single LC. (c,d) d = −0.02: Birhythmic os-
cillations, the blue trajectory in (d) shows unstable LC. (e,f)
d = 0.05: small amplitude single LC. (g,h) d = 0.2: sta-
ble steady state. The solid (red) line is for initial conditions
x0 = 0.1, ẋ0 = 0; the dotted (black) line with initial condition
x0 = 7, ẋ0 = 0. Other parameters are: µ = 0.1, α = 0.114,
β = 0.003.

XPPAUT. We explore the nature of the bifurcation with
the variation of the feedback parameter d for different
system parameters (e.g., µ, α and β).

A. Dynamics in d− µ space

The bifurcation structure in the d − µ space is com-
puted and shown in Fig. 3(a). The value of α = 0.114
and β = 0.003 are kept in the birhythmic zone of the
uncontrolled system (cf. Fig. 1). We find that the two-
parameter space is divided by global bifurcations, namely
saddle node bifurcation of limit cycle (SNLC) and a lo-
cal bifurcation, namely the supercritical Hopf bifurcation
(HB). In between two SNLC curves birhythmic behavior
exists [purple (gray) zone]: In this zone three LCs ex-
ist, of which two are stable (one with smaller amplitude
and the other with larger amplitude) and an unstable
LC. The transition from birhythmic to monorhythmic
dynamics [indicated by green (light gray) zone] is gov-
erned by these SNLC curves. Whereas the HB curve
governs the transition between single stable limit cycle
and stable steady state (SSS) [blue (dark) zone]; note
that the occurrence of the Hopf bifurcation agrees with
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our analytically predicted value of d in (15).

For a clearer understanding of the bifurcation scenario
we take an exemplary value µ = 0.1 and vary the feed-
back term d [along the broken (yellow) horizontal line in
Fig. 3(a)]. The one parameter bifurcation diagram cor-
responding to this variation is shown in Fig. 3(b). In the
absence of the self-feedback, i.e., for d = 0, the system
is in a birhythmic zone for any µ > 0 (in the present
parametric set up). If we increase d, for d > dU , the
system enters into the monorythmic zone via SNLC bi-
furcation. Here we observe that the sole limit cycle in
the system is the small amplitude LC. This small LC
looses its stability through an inverse Hopf bifurcation
and gives birth to a stable steady state. In the negative
side of d, for d < −dL, we again have a monorhythmic
region but with a large amplitude limit cycle. Therefore,
with a proper choice of the self-feedback strength d one
can induce monorhythmic oscillation of smaller (d > dU )
or larger (d < −dL) amplitude. Interestingly, a hysteresis
appears around d = 0 having a width of ∆d = (dU − dL)
[light gray (purple) of Fig. 3(b)]. In this range of d the
system may end up showing LC of large or small am-
plitude depending upon initial conditions. Also, the two
LCs are separated by an unstable LC [shown in dark
(blue) line]. It is worth noting that the width of the
hysteresis zone increases with increasing µ.

Typical time series with the variation of d are shown
in Fig. 4 (µ = 0.1, α = 0.114, β = 0.003). To de-
tect the presence or absence of birhythmicity, we con-
sider a large number of initial conditions of (x, ẋ). How-
ever, here we present the results for two different ini-
tial conditions only: one around the origin (targeting
the small amplitude LC) and the other far from the
origin (targeting the large amplitude LC). The red line
(solid) indicates the oscillation corresponding to the ini-
tial condition I1 ≡ (x0, ẋ0) = (0.1, 0) and the black line
(dotted) indicates the oscillation for the initial condi-
tion I2 ≡ (x0, ẋ0) = (7, 0). We start from a negative
d with d < −dL. Fig. 4(a) (time series) and 4(b) (phase
plane plot) show the scenario for d = −0.2. Both initial
conditions result in the large amplitude LC indicating
monorhythmicity. Next, we choose −dL < d < dU , i.e.,
the birhythmic region. Figure 4(c) and 4(d) show this
scenario for d = −0.02. The blue trajectory in Fig. 4(d)
indicates the unstable LC that separates the basin of
attraction of two LCs, i.e., the small LC resulted from
I1 and the large LC resulted from I2. Figure 4(e) and
4(f) show monorhtyhmic oscillation for d = 0.05 (i.e.,
d > dU ). Here all the initial conditions go to the smaller
amplitude LC. Finally, further increase in d results in
the stable steady state [Fig. 4(g) and 4(h) for d = 0.2].
Therefore, with the variation of d we can effectively con-
trol the birhythmic nature of the system and can induce
monorhythmic oscillation of preferred amplitude.

FIG. 5. (a) Two parameter bifurcation diagram in d−α space
for µ = 0.1, β = 0.003. The yellow broken line indicates αc

where SNLC and HB curves intersect. dC is the cusp point.
SSS: Stable steady state, LC+SSS: bistable zone with one
stable steady state and one stable limit cycle. (b) Bifurcation
diagram obtained by sweeping d along the yellow broken line
of Fig. 5(a).

B. Effect of nonlinear damping parameters

Next, we investigate the effectiveness of the control
over the whole nonlinear damping parameter space. Sig-
nificantly, we find that one can indeed induce monorhyth-
micity for any set of (α, β) by choosing a proper value of
d. To systematically understand the scenario, we study
the dynamics in the d − α and d − β space, separately.
Figure 5 shows the two-parameter bifurcation in the d−α
space for β = 0.003 and Figure 6(a) shows the same in
the d− β space for α = 0.114 (in both the cases we take
µ = 0.1). From these two bifurcation diagrams it is seen
that for d < −dC the system has only a single LC for any
choice of (α, β) (dC is the cusp bifurcation point).
The HB curve and the SNLC curve intersect at α = αc

(say) in Fig.5 (a) and at β = βc (say) in Fig.6(a). Fig-
ure 5(b) shows the bifurcation scenario with the variation
of d along the horizontal broken yellow line of Fig. 5(a)
(i.e., for α = αc = 0.122). An interesting transition oc-
curs for α > αc (β < βc): If d is increased from below, the
system generates a transition from birhythmicity to an-
other type of bistability, namely the coexistence of stable

LC and stable steady state. the genesis of this transition
is also quite interesting. Normally, in a hysteric tran-
sition, the transition from stable steady state to stable
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FIG. 6. (a) Two parameter bifurcation diagram in d−β space
for µ = 0.1, α = 0.114. dC is the cusp point. (b) Bifurcation
diagram with d for β = 0.0025 [along the yellow broken line
of Fig. 6(a)].

LC occurs through a subcritical Hopf bifurcation and the
reverse transition occurs through a SNLC [24], but here
two SNLC and one supercritical Hopf bifurcation govern
the hysteric transition. This is shown in Fig. 6(b) for
(α, β) = (0.114, 0.0025) by sweeping d along the yellow
broken line of Fig. 6(a). Also note that the Hopf bifurca-
tion occurs at dHB = µ = 0.1 and independent of α and
β as predicted in Eq. 15.
Finally, we summarize our results in the α − β pa-

rameter space. For the uncontrolled system, i.e., d = 0,
birhyhmicity occurs in a broad zone of (α− β) values as
shown in Fig. 1(a). But, for d < dC the birhythmic zone
is completely eliminated and the only possible dynam-
ics is essentially monorhythmic [Fig. 1(a) for d = −0.1].
Therefore, our study reveals that a proper choice of the
control parameter d can effectively eliminate birhythmic-
ity to establish monorhythmic oscillation and at the same
time its variation may give rise to transitions between
several interesting dynamical states; by controlling d one
can achieve any of these states in a deterministic way.

V. EXPERIMENT

Experimental observation of birhythmicity is subtle
due to the presence of inherent noise and parameter fluc-
tuation in a real system and also owing to the fact that,
in experiments one can record only one oscillation at a
time [1]. The first experimental observation of birhyth-
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FIG. 7. The experimental circuit compatible to be controlled
and acquired by daq. For description and parameter values
see text.

micity was made by Decroly and Goldbeter [25] in a
chemical system, namely the parallel-coupled bromate-
chlorite-iodide system. In their experiment the time scale
was of the order of few minutes. In biological experimen-
tal setups the time scale is usually of the order of few
hours, e.g., birhythmic oscillation in the p53 system has
two time scales of six and ten hours [26]. In this context,
the experimental observation of birhythmic oscillation in
electronic circuit possesses two distinct advantages: first,
the time scale is much reduced, of the order of mili sec-
ond and the second one is the controllability of electronic
circuits.
To demonstrate birhythmicity and verify the robust-

ness of our proposed control scheme, we realize the sys-
tem given by Eq. (3) in the electronic circuit. The de-
tailed circuit diagram is shown in Fig. 7. Here M1-M4 are
analog multiplier ICs (AD633JN) and A1-A9 are opamps
(TL074). The resulting circuit equation takes the follow-
ing form

RC
dV

dt
= W, (16a)

RC
dW

dt
=

Rµ

100R2

[

Va − V 2

(

Va − V 2

(

Vα −
Rβ

R1

V 2

))]

W

− V −
Rd

R
(W − V ). (16b)

The above equation becomes dimensionless for the fol-

lowing substitutions: t = t
RC

, x = V , y = W ,
Rµ

R1

= µ,
Rd

R
= d, Va = 1 V, Vα = α V, and

Rβ

R1

= β; with these

Eq. (16) is reduced to Eq. (3).
We consider the following values of the used circuit

components: Rβ ≈ 1 kΩ, Rµ ≈ 259.6 Ω, Vα ≈ −1.119
V and Va ≈ 321.4 mV throughout the experiment. The
initial conditions are controlled through the Data Acqui-
sition System (daq) in Labview environment [27] through
a computer. To have a selected initial conditions, the ca-



7

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Time (sec.)

Time (sec.)

Time (sec.)

Time (sec.)

V
V

V
V

V

V

V

V

V
V

V
V

FIG. 8. The experimental time series and phase plane dia-
grams obtained by daq. (a,b) Rd ≈ 390 Ω: large amplitude
single LC. (c,d) Rd ≈ 0 Ω: Birhythmic oscillations. (e,f)
Rd ≈ 57.7 Ω: small amplitude single LC. (g,h) Rd ≈ 895 Ω:
stable steady state. The large amplitude LC is for initial con-
ditions V1 = 2.1 volt, V2 = 0 volt and the small amplitude
LC is for initial condition V1 = 0.1 volt, V2 = 0 volt.

pacitors (C) in the integrators (A5 and A7) are charged
with external voltages (±V1 and ±V2). These voltages
are controlled by the daq. The voltages are connected to
relays (S1 and S2) to be ON for a particular time period.
The ON time of the relays are controlled by a microcon-
troller (Arduino Uno [28]), which is programmed to keep
the relays ON for a time interval of 5 seconds. During
this time the capacitors C of the integrators get charged
to the desired input voltages (±V1 and ±V2) which are
taken and controlled from the computer through the daq.
Then the relays are made OFF and the circuit operates
in its normal action.
The experimental time series and phase plane plots are

shown in Fig. 8. To observe the large amplitude single
LC shown in Figure 8(a,b) we add an inverter in the out-

put terminal of A9 of Fig. 7 (not shown in the figure) and
take Rd ≈ 390 Ω. Fig. 8(c) and (d) show the scenario of
birhythmicity for Rd ≈ 0 Ω. The presence of oscillations
of two different amplitudes and frequencies confirms the
occurrence of birhythmicity in the circuit. The increas-
ing Rd brings the system to a monorhythmic one. The
situation for Rd ≈ 57.7 Ω is shown in Fig. 8(e) and (f).
With further increase in Rd the oscillation is quenched
and the system rests in the stable steady state. Fig. 8(g)
and (h) shows the case for Rd ≈ 895 Ω. Note the qual-
itative resemblance between the experimental scenarios
and the numerical results of Fig.4.

VI. CONCLUSION

In summary, we have proposed a scheme to control
birhythmic behavior in nonlinear oscillators. Our con-
trol scheme incorporates a self-feedback term that is gov-
erned by the variable to be controlled and its canonical
conjugate. We have considered a prototypical model that
shows birhythmic oscillation and has relevance in model-
ing biochemical processes. Our study has revealed that
a proper choice of the control parameter can effectively
eliminate birhythmicity for any choice of nonlinear damp-
ing parameters and at the same time its variation may
give rise to transitions between several interesting dy-
namical behaviors. Physical implementation of our con-
trol scheme is very much feasible, since feedback through
conjugate variables is quite natural in many experimental
setups [29]. We can realize the control scheme if we have
access to at least one of the variables of interest; from
that we can always generate its time derivative via real
time signal processing. We believe that our study may
have potential applications in controlling birhythmicity
in several mechanical and biochemical processes as well
as in other fields.
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